Bit 34 (1994), 000{000. Finding Minimum Height Elimination Trees for Interval Graphs in Polynomial Time

نویسنده

  • BENGT ASPVALL
چکیده

The elimination tree plays an important role in many aspects of sparse matrix factorization. The height of the elimination tree presents a rough, but usually eeective, measure of the time needed to perform parallel elimination. Finding orderings that produce low elimination trees is therefore important. As the problem of nding minimum height elimination tree orderings is NP-hard, it is interesting to concentrate on limited classes of graphs and nd minimum height elimination trees for these eeciently. In this paper, we use clique trees to nd an eecient algorithm for interval graphs which make an important subclass of chordal graphs. We rst illustrate this method through an algorithm that nds minimum height elimination trees for chordal graphs. This algorithm, although of exponential time complexity, is conceptionally simple and leads to a polynomial-time algorithm for nding minimum height elimination trees for interval graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Cubic Algorithm for Computing Minimum Height Elimination Trees for Interval Graphs

In parallel sparse Cholesky factorization, nding elimination order-ings that produce elimination trees of low height is important. The problem of nding the minimum elimination tree height for a graph is NP-hard for general graphs. This problem is equivalent to the problem of nding the vertex ranking number of a graph. The problem can be solved in polynomial time for special classes of graphs. A...

متن کامل

Algorithms and complexity results for finding graphs with extremal Randić index

We show that finding a subgraph realization with the minimum generalized Randić index for a given base graph and degree sequence is solvable in polynomial time by formulating the problem as the minimum weight perfect b-matching problem of Edmonds (J Res Natl Bur Stand 69B (1965), 125–130). However, the realization found via this reduction is not guaranteed to be connected. Approximating the min...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...

متن کامل

An algorithm for computing an elimination tree of minimum height for a tree

The elimination tree is a rooted tree that is computed from the adjacency graph of a symmetric matrix A. The height of the elimination tree is one restricting factor when solving a sparse linear system Ax = b on a parallel computer using Cholesky factorization. An eecient algorithm is presented for the problem of ordering the nodes in a tree G so that its elimination tree is of minimum height. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994